The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning
نویسندگان
چکیده
In this paper we present TTT, a novel active automata learning algorithm formulated in the Minimally Adequate Teacher (MAT) framework. The distinguishing characteristic of TTT is its redundancyfree organization of observations, which can be exploited to achieve optimal (linear) space complexity. This is thanks to a thorough analysis of counterexamples, extracting and storing only the essential refining information. TTT is therefore particularly well-suited for application in a runtime verification context, where counterexamples (obtained, e.g., via monitoring) may be excessively long: as the execution time of a test sequence typically grows with its length, this would otherwise cause severe performance degradation. We illustrate the impact of TTT’s consequent redundancy-free approach along a number of examples.
منابع مشابه
An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کاملA redundancy allocation problem with the choice of redundancy strategies by a memetic algorithm
This paper proposes an efficient algorithm based on memetic algorithm (MA) for a redundancy allocation problem without component mixing (RAPCM) in a series-parallel system when the redundancy strategy can be chosen for individual subsystems. Majority of the solution methods for the general RAPCM assume that the type of a redundancy strategy for each subsystem is pre-determined and known a prior...
متن کاملImproved Frog Leaping Algorithm Using Cellular Learning Automata
In this paper, a new algorithm which is the result of the combination of cellular learning automata and frog leap algorithm (SFLA) is proposed for optimization in continuous, static environments.At the proposed algorithm, each memeplex of frogs is placed in a cell of cellular learning automata. Learning automata in each cell acts as the brain of memeplex, and will determine the strategy of moti...
متن کاملRegion Directed Diffusion in Sensor Network Using Learning Automata:RDDLA
One of the main challenges in wireless sensor network is energy problem and life cycle of nodes in networks. Several methods can be used for increasing life cycle of nodes. One of these methods is load balancing in nodes while transmitting data from source to destination. Directed diffusion algorithm is one of declared methods in wireless sensor networks which is data-oriented algorithm. Direct...
متن کاملRegion Directed Diffusion in Sensor Network Using Learning Automata:RDDLA
One of the main challenges in wireless sensor network is energy problem and life cycle of nodes in networks. Several methods can be used for increasing life cycle of nodes. One of these methods is load balancing in nodes while transmitting data from source to destination. Directed diffusion algorithm is one of declared methods in wireless sensor networks which is data-oriented algorithm. Direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014